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The objective of the present work is to investigate experimentally the secondary
instability of the one-dimensional voidage waves occurring in two-dimensional liquid-
fluidized beds and to examine the physical origin of bubbles, i.e. regions devoid of
particles, which arise in fluidization. In the case of moderate-density glass particles,
we observe the formation of transient buoyant blobs clearly resulting from the
destabilization of the one-dimensional wavy structure. With metallic beads of the same
size but larger density, the same destabilization occurs but it leads to the formation of
real bubbles. Comparison with previous analytical and numerical studies is attempted.
Whereas the linear and weakly nonlinear analytical models are not appropriate,
the direct nonlinear simulations provide a qualitative agreement with the observed
destabilization mechanism.

1. Introduction
The bubbling behaviour of gas-fluidized beds is one of the most intriguing phe-

nomena occurring in fluidization. When a bed of solid particle is fluidized by a gas,
regions almost completely devoid of particles, known as ‘bubbles’, appear near the
bottom of the bed and rise, causing the bed to take on the appearance of a boiling
liquid. Most of what has been learnt about such bubbles concerns the behaviour
of single gas bubbles (see for instance the review of Davidson 1995). By contrast,
liquid-fluidized beds are found to be less unstable and to develop much smoother
structures, namely voidage waves, which have mostly been studied in narrow tubes
(see Anderson & Jackson 1969; Ham et al. 1990; Nicolas et al. 1996; Duru et al.
2001). The question of the physical origin of the bubbles has only been addressed
recently and, similarly, so has the search for a physical mechanism which would allow
a clear distinction to be made between bubbling and non-bubbling fluidized beds and
the difference between gas and liquid fluidization to be explained.

In a series of papers (Batchelor 1988, 1993; Batchelor & Nitsche 1991, 1993, 1994),
Batchelor and Nitsche proposed a four-stage scenario to explain the formation of
bubbles. First, a one-dimensional voidage wave evolves from the unstable uniform
state and creates stratification of the suspension with alternating dilute and dense
layers. Secondly, the one-dimensional wavetrain develops a two-dimensional structure
because of a gravitational overturning instability, which tends to tilt ‘heavy’ layers of
high particle concentration and ‘light’ layers of low particle concentration. Thirdly,
this secondary instability ultimately creates regions of lower-than-average particle
concentration where an internal fluid circulation develops. Particles are finally expelled
by centrifugal forces from these buoyant blobs and this leads to bubbles of clear fluid
rising up the bed.
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There is now a general consensus on the two first stages proposed by Batchelor
and Nitsche. Through a linear stability analysis of a two-phase model to describe
the fluidized beds, Anderson & Jackson (1968) showed that fluidized beds are most
unstable to one-dimensional vertically propagating disturbances. The resulting one-
dimensional voidage wavetrain has been widely studied in experiments using narrow
liquid-fluidized beds (see Anderson & Jackson 1969; Ham et al. 1990; Nicolas et
al. 1996; Duru et al. 2001). This one-dimensional voidage wave has been shown
to be unstable to two-dimensional perturbations of large wavelength. This unstable
character has been established analytically by Göz (1995) and Göz & Sundaresan
(1998) who studied the weakly nonlinear stability of small-amplitude one-dimensional
waves to transverse two-dimensional perturbations.

Recent numerical studies, focusing on two-dimensional fully nonlinear simulations
of the two-phase equations, have dealt with the situation obtained as a result of this
two-dimensional destabilization. Anderson, Sundaresan & Jackson (1995) studied the
evolution of two-dimensional disturbances applied to two different base states: the
uniform bed and the fully saturated one-dimensional wavetrain. In both cases, they
obtained bubble formation in their simulations of gas-fluidized beds, resulting either
from the two-dimensional destabilization of the fully developed one-dimensional
voidage wave or from the growth of a two-dimensional perturbation applied to the
uniform bed.

When simulating a liquid-fluidized bed, Anderson et al. (1995) reported no bubble
formation. The two different base states mentioned above in the case of gas-fluidized
beds were examined as well. When a two-dimensional perturbation was allowed
to develop, superimposed on a fully developed one-dimensional voidage wave, the
evolution of the resulting two-dimensional structure created short-lived buoyant blobs
which were rapidly destroyed because more particles entered them from their roof
than were able to escape from their base. When a two-dimensional perturbation was
imposed on the uniform bed, the destabilization of the plane wavetrain occurred as
previously but earlier in the one-dimensional mode development so that the minimum
particle concentration obtained in the buoyant blob was larger than previously. For
this latter situation, Anderson et al. (1995) argued that the growth rates of the
one-dimensional and two-dimensional instability were such that the one-dimensional
instability failed to produce sufficient voidage gradients before the two-dimensional
destabilization occurred, contrary to what is found for gas-fluidized beds.

Glasser, Kevredikis & Sundaresan (1996, 1997) have shown that bubble-like struc-
tures are two-dimensional stationary solutions of the two-phase equations, for all the
cases studied, covering gas-fluidized beds as well as liquid-fluidized beds. Then, they
checked whether these bubble-like structures could be reached by the destabilization
either of the uniform bed or of the fully saturated one-dimensional wavetrain. Like
Anderson et al. (1995), Glasser et al. (1996, 1997) obtained, through perturbation
of both base states, bubble formation in their simulations of a gas-fluidized bed
and a water-fluidized bed of dense lead shot beads. Their results obtained when
simulating a liquid-fluidized bed of glass beads are less clear-cut. For high-amplitude
two-dimensional solutions, their results are similar to those of Anderson et al. (1995)
without bubble formation, but they note that low-amplitude two-dimensional sta-
tionary solutions can be reached by both mechanisms described above. Glasser et al.
(1997) finally preferred to refer to a subtle difference in the solid flow pattern of the
stationary two-dimensional structures to make a distinction between bubbling and
non-bubbling beds.

The physical link with the scenario proposed by Batchelor and Nitsche is not
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straightforward. Nonetheless, Anderson et al. (1995) and Glasser et al. (1996, 1997)
have drawn attention to the similarity with the physical mechanism proposed by
Batchelor & Nitsche (1991) for the initial buckling of the one-dimensional waves.

The two-dimensional destabilization of a plane wavetrain has been observed experi-
mentally by El-Kaissy & Homsy (1976) with a two-dimensional liquid-fluidized bed
of glass beads. The destabilization of the wavetrain resulted into the brief appearance
of voidage pockets. These voidage pockets were short-lived and were far from being
totally empty of particles. This is reminiscent of what was found by Anderson et al.
(1995) and Glasser et al. (1997) and it is the only experimental observation supporting
these simulation results. In a wider bed and larger range of fluidization, Didwania &
Homsy (1981) identified four discrete regimes of fluidization including (in the order
of increasing fluidization) wavy, transverse structure, turbulent, and bubbly states.
There is also an older report of a three-dimensional bubbling liquid-fluidized bed of
lead shot particles (Davidson & Harrison 1963) revealed by bubble eruption at the
free surface, but nothing is said about the way these bubbles were formed. As far
as we know, there is no quantitative experimental study of the destabilization of the
one-dimensional wavetrain and of its possible link to bubble formation.

In this paper, we present results concerning the secondary instability of the one-
dimensional voidage wavetrain occurring in two-dimensional liquid-fluidized beds.
In the case of moderate-density glass beads, we describe the formation of transient
buoyant blobs resulting clearly from the destabilization of the one-dimensional wavy
structure, analogous to that qualitatively observed by El-Kaissy & Homsy (1976)
and to that found in the numerical simulations. We also examine the mechanism of
disappearance of these buoyant blobs. With metallic beads of the same size but larger
density, we report, for the first time, on two-dimensional destabilization leading to
the formation of real bubbles. We attempt to compare quantitatively these results to
those of the recent numerical simulations.

In § 2 the experimental techniques are presented. The experimental results for
the moderate-density particles are presented in § 3 and those for the high-density
particles in § 4, including a detailed description of this new bubbling regime of liquid
fluidization. The response of the bed to a single forced perturbation is briefly discussed
in § 5. Comparisons with numerical and theoretical works are given in § 6. Conclusions
are drawn in § 7.

2. Experimental techniques
2.1. Experimental apparatus

The fluidized bed apparatus was similar to that used by Duru et al. (2002). The one-
dimensional bed was however replaced by a two-dimensional bed which consisted
of a glass rectangular cell of 12× 1.2 cm cross-section and 200 cm high, see figure 1.
The suspension was held by a moving two-dimensional piston-injector based on
that used in the one-dimensional experiments. However, because of strong friction,
it was not possible to operate this piston to produce a local harmonic forcing of
the particle concentration at the bottom of the bed, as done in one-dimensional
experiments. This piston was thus used to study the response of the bed to a single
forced perturbation, see § 5. A uniform distribution of the flow was produced by a
bronze sintered plate located before the piston, which ensured a very large pressure
drop across the distributor. The fluid was pure water. It was circulated through the
bed by a piston metering pump (Fluid Metering Inc. model QD, 1425 r.p.m.), used to
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Set ds (µm) ρs (g cm−3) Wb/ds Db/ds

A 1220± 60 4.08± 0.01 100 10
B 1200± 90 2.48± 0.01 100 10
C 1000± 40 7.96± 0.01 120 12
D 685± 40 2.55± 0.01 175 18

Table 1. Particle characteristics.

Reservoir Pump

200 cm

Cell (12 cm × 1.2 cm)

Suspension

Porous piston

Cell support

Fluid injection part

Figure 1. Experimental set-up. The cell support part is screwed on a fixed stand. The porous
support of the beads can be moved.

produce flow rates up to 7 dm3 min−1. A soft tube was placed upstream of the bed in
order to isolate the bed from pump vibrations. A soft tube also collected the overflow
at the top of the bed and carried it back to a thermostated reservoir. The water
temperature was maintained at 27 ± 1 ◦C and the viscosity and density of the fluid
were ηf = 0.90 ± 0.02 cP and ρf = 0.997 ± 0.002 g cm−3. The particles used were
spherical glass beads or stainless steel beads, see table 1. Whereas the bead diameter
was roughly the same for sets A, B and C, the densities varied from 2.48 g cm−3 to
7.96 g cm−3, see table 1. The bed depth to particle diameter ratio Db/ds and the bed
width to particle diameter ratio Wb/ds are also given in table 1.

2.2. Volume fraction measurements

With glass beads, we were able to study the light transmitted through the bed by
using a charged coupled device camera (768× 512 pixels) and the public domain
image processing NIH Image†. The fluidized bed was backlighted by using two neon

† Public domain NIH Image program, developed at the U.S. National Institute of Health and
available from the Internet by anonymous ftp from zippy.nimh.nih.gov.
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Figure 2. Calibration of the averaged intensity received by the camera, 〈U〉, with the mean volume
fraction, φ0. The solid curve corresponds to the best square-law correlation.

tubes. A diffuser screen was then placed between the neon tubes and the bed in order
to obtain a lighting of the bed as homogeneous as possible.

The fluidized bed was filmed at 25 frames per second. The intensity received by
the camera was averaged over 400 frames, for a given square box of the camera field.
We then established the calibration law giving the average intensity 〈U〉 received
by the camera at this given location in the bed as a function of the mean particle
concentration φ0. A typical result is shown in figure 2. The calibration law did not
depend on the size of the box over which the averaging was performed nor on the rate
of frame acquisition. The steepness of the fitting square-law depended on the aperture
of the camera and on the intensity of the backlighting. For instance, if the aperture
was low, the resolution in received light intensity was weak and the calibration law
was flattened. In order to avoid the sparkling of the glass beads which saturated the
camera, we used a sheet of tracing paper which was positioned on the bed glass wall
facing the camera. The images were slightly smoothed without any sparkling.

Once the calibration law was known, we had access to the particle concentration
‘map’ of the flow. The camera field was divided into rectangular cells and the fitting
calibration law was computed on each cell. The size of the cell, which corresponded in
fact to a ‘resolution’, could be chosen freely. Then, each instantaneous image captured
by the camera was divided into the same grid and the particle concentration for each
cell was deduced from the corresponding calibration law. With this technique, it was
possible to ignore any inhomogeneities in the backlighting of the bed, as they simply
affect locally the calibration law. We were also able to study the particle concentration
fluctuations, i.e. the standard deviation σφ of the concentration distribution at a given
location in the fluidized bed, by measuring the fluctuations of the intensity received
by the camera. The size of the cell did not affect the results concerning particle
concentration fluctuations as long as it was smaller than 6 mm, i.e. smaller than
the typical length scale of the fluctuations. The results presented in this paper were
obtained by dividing the camera field into 4 mm square cells which also ensured a
good resolution of processed images.

2.3. Particle image velocimetry

We also filmed the fluidized beads near the glass wall and particle velocities were
measured using the particle image velocimetry technique (PIV). The bed was now
illuminated from the front, that is from the same face as that filmed by the camera. The
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camera was focused on the beads against the glass wall. For this kind of measurement,
the sheet of tracing paper fixed on the glass wall was of course removed.

Series of stacks of two images were acquired. Each stack was then processed to
find the velocity-vector map of the flow field by using an adapted source code and
compiled application for PIV developed by Cardoso within NIH image†, see Cardoso,
Marteau & Tabeling (1994). In practice, this involves discretizing each image into a
map of 25× 25 nodes. In a small interrogation region explored around each node,
the local particle displacement between the two images was measured using direct
cross-correlation techniques. This was repeated around each node to build up the
complete two-dimensional velocity-vector map.

When using glass beads, the time interval between two images was 1/50 s. In fact,
the two images were simply the odd and even fields of a single frame obtained
with the camera. Reliable results were obtained only when the particle motion was
large (typically 4–5 pixels in between two images). For smaller bead displacement,
random bead sparkling between the two images generally overwhelmed the real bead
displacement and thus misled the PIV application.

When using stainless steel beads, the image quality was much better than with glass
beads since there was no sparkling of the metallic beads but rather a sharp reflection
of the front light on each bead which acted like a tracer for the PIV application. It
proved to be very reliable and efficient to measure the velocity field using the PIV
technique.

3. Experimental results for moderate-density beads
3.1. Description of the flow regimes

As previously noted in the fluidized bed literature (see for instance Ham et al. 1990;
Didwania & Homsy 1981), different regimes of fluidization are observed depending
on the fluid superficial velocity q. Typical expansion results, obtained when plotting
the superficial velocities q versus mean particle volume fractions φ0, are presented in
figure 3 in the case of beads of set B. This expansion curve can be well-fitted by an
empirical Richardson–Zaki relation, q = vt(1− φ0)

n.
Below minimum fluidization, q < qmf , the fluid crosses the packed suspension

which can be considered as a porous medium. For q > qmf , the fluidization is not
homogeneous since the liquid crosses the suspension of nearly packed beads through
preferential paths. This regime is called ‘worming’ fluidization, see Ham et al. (1990).
The value of qmf was taken to be the velocity at which the bed began to expand and
was measured by identifying the break in the expansion curve, see figure 3. The exact
value of qmf showed a small hysteresis depending whether the transition was noticed
by increasing the flow rate q progressively from zero or by decreasing q from a larger
value. But the behaviour observed at a particular flow rate q did not exhibit path
dependence for the regimes described below.

As the flow rate is increased, q > qc, the whole suspension is fluidized and starts
to exhibit a primary voidage wave instability where a concentration plane wave
propagates upwards and grows along the bed. The wavefronts are horizontal and
extend over the width of the cell. The particle concentration is a function of the
vertical direction z. The dominant vertical wavelength λz is given in table 2. It does

† Both adapted source code and compiled application for PIV on MacOS are available at
http://134.157.79.91/olivier/NIH/NIH.html. There is also a standard C version available at the
same address for Unix or Window usage.
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Set vt (cm s−1) n qmf (cm s−1) qc (cm s−1) q2D (cm s−1) qt (cm s−1) λz (cm)

A 21± 0.5 2.4± 0.03 2± 0.05 2.8± 0.1 3.6± 0.1 Not observed 4.0± 0.2
B 14± 0.3 2.53± 0.03 1± 0.05 1.5± 0.2 2.2± 0.1 3.8± 0.1 3.5± 0.2
D 10.3± 0.2 3.23± 0.01 0.55± 0.02 0.75± 0.02 0.88± 0.02 1.32± 0.02 2.2± 0.1

Table 2. Expansion characteristics and vertical wavelength λz .
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Figure 3. Expansion curve of the fluidized bed for beads B. The solid line corresponds to the
Richardson–Zaki law.

not depend on the flow rate q. Once the wave has reached a certain amplitude, we
observe the transverse destabilization of the plane wavetrain and thus the transition
from a one-dimensional to a two-dimensional regime where the particle concentration
is a function of both the horizontal, x, and vertical, z, directions. The aim of this
paper is to study this secondary instability which will be described in more detail in
the next section.

With further increase in the flow rate, the growth rate of the primary instability
increases and the two-dimensional destabilization of the plane wavetrain occurs closer
to the bottom of the bed. For q > q2D , the lateral coherence of the wave is lost over
all the bed height. We do not observe a stage of plane-wave growth but rather
a two-dimensional structure straight away. For an even larger flow rate (q > qt),
the two-dimensional wavy state no longer exists and the regime is turbulent. In
this regime, first described by El-Kaissy & Homsy (1976), particle concentration is
homogeneous and individual particles move randomly around some mean position.
Limitations of our pump did not allow us to increase the flow rate further (it was up
to q = 7 cm s−1) and thus we did not observe the transition to a bubbly regime, with
bubbles appearing sporadically in the bed over the turbulent background, reported
by Didwania & Homsy (1981).

This succession of regimes was observed for sets B and D of moderate-density
beads. The turbulent regime was not found for set A, probably because of the
limitation of the pump. The expansion characteristics as well as the flow rate limits
between the regimes are given in table 2.
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Figure 4. Two-dimensional destabilization of a plane wave with set A of particles, for q = 3.1 cm s−1

(φ0 = 0.55). (a) t = 0 s, (b) t = 0.16 s, (c) t = 0.28 s, (d ) t = 0.32 s, (e) t = 0.40 s, ( f ) t = 0.56 s. The
‘zero’ z-position is arbitrary and does not correspond to the bed bottom. The uncertainty in φ is
±0.003.

3.2. Two-dimensional destabilization

We now describe the secondary instability of the voidage wavetrain, observed for flow
rates qc < q < q2D . A typical transverse destabilization, obtained with beads of set
A, is shown in figure 4. The same behaviour was obtained for beads of set B. These
images have been processed as described in § 2.2. The two-dimensional destabilization
of the plane wave can be described as a four-stage event. First, the plane wave
reaches a certain amplitude which will be discussed in the following subsection, see
figure 4(a). Secondly, the wave buckles and one or two zones of higher voidage
appear. We do not observe more than one or two break-ups by plane waves in the
width of our rectangular cell (two voidage pockets can be seen in figure 4b, c). This
indicates that the secondary instability wavelenght λx is probably of the order of the
width, or half the width, of the bed. A precise determination of this wavelength would
necessitate a bed of wider lateral extent. Thirdly, these voidage pockets accelerate,
see figure 4(c). The minimum particle concentration reached inside a voidage pocket
during the destabilization is obtained at the very beginning of this third phase, when
the voidage pocket starts to accelerate. Finally, the voidage pockets disappear, see
figure 4(d, e) and no recognizable pattern was established, see figure 4(e, f ) (note that
the concentration variations are very weak for these last plots). It should be noticed
that there is no clear distinction between the last two stages as the acceleration and
the destruction of the voidage pockets happen simultaneously. We also observe that
during the acceleration stage, the voidage pocket often merges with the wave just
ahead, or the remnant of the wave if it has just broken up. This happens to the
voidage pocket on the right in figure 4 and also results in the disappearance of the
diluted blob.

The mechanism of destruction of the buoyant blob (fourth and last stage in
the above discussion) can be investigated in more detail. During the last stage of
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Figure 5. Particle flow near the wall during the last stage of a break-up event: (a) viewed from
a reference frame moving with the buoyant blob; (b) viewed from the fixed laboratory frame. The
position of the remaining hole of low concentration is indicated.

the typical event described above, see figure 4(d, e), we were able to perform PIV
measurements despite the sparkling of the glass beads, because the motion of the
beads was then significant. Unfortunately, in the earlier stages of the two-dimensional
destabilization, the motion of the particles was too small and therefore no reliable
PIV measurements were possible. Figure 5 shows the particle flow field near the glass
wall. Figure 5(a) is viewed from a frame moving with the voidage pocket whereas
figure 5(b) is viewed from the fixed laboratory frame. We located on these two graphs
the low-concentration zone, similar to the one visible in figure 4(d ). Figure 5(b)
reveals the upward motion of the particles below the incipient bubble. However,
figure 5(a) shows that, in the frame of the buoyant blob, particle motion remains
directed downwards everywhere. This suggests that the blob is destroyed because it
is filled from above: more particles fall through the upper surface of the bubble than
can escape below. This causes the upward motion of the high-density region below
the bubble as can be seen in figure 5(b).

Above this break-up zone, the bed reaches a complex two-dimensional regime
shown in figure 6. The remnant of the original plane wave, out of which the voidage
pockets grew, is strongly distorted by the break-up. The voidage pocket leaves behind
slower arms of the initial voidage perturbations which are inclined steeply and can
result in oblique travelling waves.

These oblique travelling waves are subjected to the same tranverse instability as
the one-dimensional travelling waves resulting in the formation of transient voidage
pockets (as can be seen in figure 6). Thus, above the one-dimensional wavetrain break-
up region, a complex unsteady two-dimensional regime is observed, with oblique
travelling waves interacting with each other or with transient voidage pockets. It is
thus difficult to extract data for this flow regime. However, we can state that the
oblique travelling waves are similar to the one-dimensional travelling waves, with
comparable velocity and density profile. The typical spacing between two oblique
travelling waves is comparable to the vertical wavelength λz of the original one-
dimensional wavetrain. We observe oblique travelling waves tilted to the right or to
the left. The amount of tilt is variable but never exceeds 30◦ (see figure 6). As the
flow rate is increased, for q2D < q < qt, this complex two-dimensional wavy state fills
all the bed height.

For the smaller beads of set D, the situation encountered for qc < q < q2D is slightly
different. A transverse destabilization of the voidage wavetrain is still observed but it
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does not give birth to short-lived voidage pockets, as observed for sets A and B. It
rather takes the form of a transverse modulation of the initially plane wave, which
evolves smoothly. The deformed wavetrain is show in figure 7. Merging between two-
dimensional waves is frequent. The same behaviour was also observed in a narrower
fluidized beds with an aspect ratio Wb/ds ∼ 90, i.e. with same lateral confining effect
as that of sets A and B in the 12 cm wide bed. This seems to show that the observed
difference in two-dimensional destabilization (between beads A/B and D) is not due
to different lateral confinement.

3.3. Fluctuations of concentration

The study of the particle-concentration fluctuations is also a way to obtain more
information about the transverse destabilization. Figure 8 presents the standard
deviation of the particle concentration distribution σφ for set of beads A, as a
function of bed height for different flow rates q. For q = 2.8 cm s−1 (circles in figure 8)
the growth of the particle-concentration fluctuations is clearly exponential throughout
the bed height and this is related to the slow growth of the plane wavetrain. For
q = 3 cm s−1 (squares in figure 8), an initial stage of exponential growth is still
seen but, at 35 cm from the bed bottom, fluctuations reach a maximum and then
decrease slightly. In fact, the initial increase of the fluctuations is due not only to
the growth of the one-dimensional wavetrain but also to the appearance of voidage
pockets, at 20–30 cm from the bottom of the bed. The small decrease happens in the
bed region located just above the two-dimensional destabilization zone and is due
to the ‘homogenization’ of particle concentration resulting from the destruction of
the two-dimensional voidage pockets. For q = 4 cm s−1 and q = 6 cm s−1 (respectively
diamonds and crosses in figure 8), the flow regime is immediately two-dimensional
but we nonetheless notice a rapid increase of the particle-concentration fluctuations
from the bed bottom.

First, this plot shows the existence of a saturated value σsatφ for the particle-
concentration fluctuations, which seems to be independent of the mean particle
concentration, as already observed by El-Kaissy & Homsy (1976). It must be repeated
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that this saturated value is obtained after the two-dimensional destabilization zone
and thus corresponds to a complex two-dimensional regime. As can be seen in table 3,
this value seems to depend only on the particle diameter. The value of σsatφ obtained
with our set A is comparable to what was measured by El-Kaissy & Homsy (1976)
with a similar experimental setup and with the same beads. As the Reynolds and
Froude numbers based on the fluid velocity u (Re = udsρf/µf , Fr = u2/gds) were
the only dimensionless groups varied independently in their experiments, El-Kaissy
& Homsy argued that the statistically defined property σsatφ should scale like Re2/Fr
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Set φ0-range σsatφ

A 0.40–0.57 0.014± 0.001
B 0.40–0.57 0.014± 0.001
D 0.52–0.55 0.003± 0.001

Table 3. Value of σsatφ for beads A, B and D.

Set φ0 σcφ a1D asat

A 0.53–0.57 0.008± 0.001 0.023± 0.006 0.10–0.13
B 0.52–0.57 0.011± 0.001 0.032± 0.006 0.6–0.7
D 0.52–0.55 0.003± 0.001 0.009± 0.003 0.8

Table 4. Value of σcφ for beads A, B and D. The value asat was not measured in the one-dimensional
experiments for beads of set D, but the measured value of asat for beads of same the density and
similar diameter (770 µm), was ∼ 0.8.

to be independent of the flow rate. The present results agree approximately well with
this scaling: σsatφ ∼ gd3

s /(ρf/µf)
2.

Secondly, since the two-dimensional destabilization of the voidage wavetrain is the
main concern of this study, we tried to estimate the value of the particle-concentration
fluctuations σφ in the region of the bed where the two-dimensional destabilization
occurs. For example at q = 3 cm s−1, the transition from a one-dimensional regime to
a two-dimensional regime occurs in a zone of 10 cm vertical extent located between
z = 20 cm and z = 30 cm. Hence, fluctuations in particle concentration at z = 20 cm,
σφ = 0.008 ± 0.001, are the expression of the presence of a purely one-dimensional
wave close to destabilizing transversally. We can estimate such a critical value of the
particle concentration fluctuations σcφ for flow rates qc < q < q2D , for which a stage
of one-dimensional growth is visible, see table 4. It seems not to depend on q and
the corresponding limited range in φ0 for which it was measured is given in table 4.
From the shape of the wave deduced from the previous study of Duru et al. (2002),
we can then relate σcφ to the amplitude of the one-dimensional wave just before its
transverse destabilization, a1D , for further details see Duru (2001). This value can
also be recovered from the analysis of concentration maps such as shown in figure 4.
This critical one-dimensional wave amplitude is much smaller than the amplitude of
a one-dimensional saturated wave, asat measured in the previous work of Duru et al.
(2002), as can be seen in table 4. This clearly means that the destabilization of the
one-dimensional wave occurs before it becomes saturated.

4. Experimental results for high-density beads
4.1. Description of the flow regimes

In this section, we focus on the different flow regimes observed when using set C of
particles (stainless steel beads, ds = 1 mm and ρs = 7.8 g cm−3). The expansion curve
for these beads is shown in figure 9. The bed of particles remains packed for q < qmf
and a worming regime is observed for qmf < q < qc (the expansion characteristics are
given in table 5). As for the moderate-density beads, the primary instability observed
for qc < q takes the form of a voidage wavetrain. It propagates and grows along
the bed before destabilizing transversally. Figure 10 shows successive snapshots of
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Set vt (cm s−1) n qmf (cm s−1) qc (cm s−1) qb (cm s−1)

C 35.4± 0.4 2.66± 0.03 3.0± 0.05 3.7± 0.01 4.8± 0.02

Table 5. Expansion characteristics for beads C.
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Figure 9. Expansion curve of the fluidized bed for beads of set C. The solid line corresponds to
the Richardson–Zaki law.

the fluidized beads visible at the wall during a typical destabilization event. The
fluidized bed is not only lit from behind but also from the front: each white spot is
the reflection of the front light on a single bead. As the motion of the beads due to
the voidage wave is very small and so there are no blurred parts on the pictures (the
shutter time is 1/50 s), we present next to each snapshot a sketch in order to outline
the position of the voidage perturbation.

The destabilization of the plane perturbation seen in figure 10(a) results in the
buckling of the plane wave, see figure 10(b), and gives birth to a voidage pocket (see
figure 10b, c). We have no way, with our set-up, to measure the particle concentration
in the dilute region. However, the backlight is visible through the voidage hole so
that it must be extremely dilute. The void accelerates and its size increases as it starts
to propagate up the bed, see figure 10(d, e). The similarity between this succession
of events and what was obtained for moderate-density beads A and B, see § 3.2, is
striking. The first stages of the two-dimensional destabilization, namely the buckling
of the voidage wave, the appearance of a dilute zone and its acceleration, are similar.
The major difference lies in the evolution of the dilute structure created by the
secondary instability. For glass beads, we can hardly use the term ‘bubble’, in the
usual fluidized bed terminology, to describe the buoyant blob obtained as it is far from
being totally empty of particles and disappears very quickly. But with beads of set C,
we obtain a propagating structure empty of particles, as can be seen in figure 10(e),
that is a real bubble. To our knowledge, our experiments are the first to report bubble
formation resulting clearly from the destabilization of a one-dimensional voidage
perturbation.

For qc < q < qb, the life-time of such a bubble is very short as it is rapidly destroyed
when colliding with remnants of plane waves or other bubbles. But as the flow rate
is increased, for qb < q, the bed behaviour becomes clearly dominated by the bubble
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Figure 10. Transverse destabilization of a plane voidage wave with beads C. The sketches on the
right show the position of the voidage perturbation.

dynamics. In this bubbly regime, bubbles appear continually within the bed. They
result from the destabilization of plane waves near the bottom of the bed. For such
flow rates, the lateral extent of these plane waves is a few centimetres and they do
not extend over the bed width. Higher in the bed, the strong agitation caused by the
bubble motion also creates density fluctuations susceptible to evolving into bubbles.
A new-born bubble has a continuously increasing size. Bubbles are not stationary
two-dimensional structures. A typical bubble picture is shown in figure 11(a). The
shutter time is 1/50 s and the blurred parts of the picture make apparent the particle
motion around the bubble. In figure 11(b), we show the particle flow field around
a bubble obtained by PIV (in the fixed laboratory frame) to emphasize the particle
motion seen in figure 11(a). The bubble has an almost circular shape with a rounded
top and a flat bottom, like a bubble in a gas-fluidized bed.

4.2. Bubbly regime

There is an extensive amount of literature on the bubbling regime observed in gas-
fluidization, in two-dimensional and three-dimensional geometry (for a review, see
Davidson 1995). It is thus interesting to compare the characteristics of the bubbly
regime we observe in our liquid-fluidized bed to those obtained in gas fluidization.
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Figure 11. (a) Bubble picture; (b) particle flow around a bubble, obtained by PIV.

4.2.1. Bubble behaviour

As already mentioned, newly formed bubbles have a rapidly increasing size. This
individual bubble growth is also encountered in gas fluidization. A bubble breaks up
into two parts once it has reached a critical size. Such a bubble break-up event is
shown in figure 12. As the bubble propagates (see figure 12a, b), its size increases and
its shape tends to widen, see figure 12(c). Then falling particles make an indentation
at the top of the bubble and this causes the elongated bubble to separate into two
smaller bubbles (figure 12d ). This happens only once the bubble reaches some critical
lateral extent. Depending on the relative size of each fragment, both bubbles may
continue to propagate or the smaller may disappear as it cannot grow if it is hindered
by the larger. This latter situation occurs in figure 12(e, f ). The remaining bubble
continues to propagate and starts growing again: it will soon break up into two parts.
As a consequence of this break-up mechanism, we do not observe the progressive
formation of bubbles of larger and larger size. It must be mentioned that the same
kind of bubble splitting mechanism is observed in gas fluidization (in two-dimensional
and three-dimensional beds), see Rowe (1971). To our knowledge, the only theoretical
approach to the bubble splitting problem is due to Clift, Grace & Weber (1974),
who treated the upper interface bubble-dense phase as an interface undergoing a
Rayleigh–Taylor instability. However, their results do not predict a maximum stable
size for a bubble that could be compared to experimental results.

In the bubbly regime observed in our liquid-fluidized bed, when two bubbles come
closer, they start following one each other, forming ‘trains’ of bubbles. Within these
‘trains’, the distance between two adjacent bubbles remains more or less constant. The
bubbles are strongly distorted and their rise speed is larger than that of an isolated
bubble. Figure 13 shows such a ‘train’ of bubbles. Three bubbles are visible within the
camera field. The number of bubbles involved in a train (and so its vertical extent)
is variable but can be large. The typical spacing between two successive bubbles is
4–7 cm. ‘Trains’ of bubbles propagate until they reach the surface of the bed. The
particles between two bubbles of the same train experience a large upward motion,
as shown by the blurred zone in figure 13. Therefore, the ‘trains’ induce strong
recirculation motions of the particles within the bed. Such bubble flow patterns are
also encountered in gas-fluidized beds, see Clift & Grace (1985).

4.2.2. Statistics of the bubbles size

We have studied the bubble-size distribution and its evolution along the vertical
direction z. For a given value of z, 500 images of the bed are captured. The capture
window, of dimensions 3× 12 cm, is centred on the given z-value. The total number
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(d) (e) ( f )
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Figure 12. Bubble splitting. (a) t = 0 s, (b) t = 0.12 s, (c) t = 0.16 s, (d ) t = 0.28 s, (e) t = 0.36 s,
( f ) t = 0.52 s.

Bubbles

Beads
moving upwards

1 cm

Figure 13. A ‘train’ of bubbles.

of bubbles and the bubble-area distribution are then measured using the software
NIH Image, see Duru (2001) for further details. Figure 14 shows the evolution with
z of the distribution of bubble area A, expressed in cm2. For a given z, we have
plotted the percentage of the total number of bubbles in each of four area categories.
The inset shows the total number of bubbles as a function of z. These measurements
were made in the bubbly regime, for q = 5.2 cm s−1 (figure 14a) and q = 4.4 cm s−1

(figure 14b). The statistical distribution of bubble area remains unchanged as long as
z > 25 cm for q = 5.2 cm s−1 and z > 35 cm for q = 4.4 cm s−1, which confirms the
visual observation that there is no global growth of bubble size along the bed. Also,
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Figure 14. Bubble area A distribution as a function of z. (a) q = 5.2 cm s−1; (b) q = 4.4 cm s−1.
0.3200 < A < 0.6300 (+); 0.6300 < A < 0.9500 (�); 0.9500 < A < 1.2600 (�); 1.2600 < A (×). A is
expressed in cm2. The inset gives the evolution of the total number of bubbles as a function of z.

the total number of bubbles remains constant. At a flow rate q = 5.2 cm s−1 and for
z > 25 cm, the mean bubble radius, defined by half the maximal lateral extent of the
bubble and measured on video images, is 0.7± 0.1 cm. The observed bubbles do not
have exactly a circular shape (see for instance figure 11). Bubble aspect ratio, defined
by 2rb/hb (where hb is the maximal vertical extent of the bubble and is measured on
video images) ranges between 1.3 and 1.5.

These data suggest that in our fluidized bed of limited height, one can nonetheless
talk about a fully developed state of bubbling where the number of bubbles and
bubble size distribution depends only on q. It results from a dynamic equilibrium
between bubble growth and formation on one hand and bubble splitting on the other
hand.

4.2.3. Rise velocity of the bubbles

The rise velocity of bubbles has been widely studied in gas-fluidized beds. It has
been shown experimentally that for an isolated bubble in a three-dimensional bed:

ub = K(grb)
1/2, (4.1)

where the constant K depends on the fluidized material (typically K ranges between
0.8 and 1, see Rowe 1971). Some theoretical analyses of single bubble motion in
a gas-fluidized bed (for a review, see Jackson 2001), taking advantage of the fact
that ρf � ρs in this case, and based on two-phase equations, have shown that
ub = 2/3(grb)

1/2 (the prefactor 2/3 is replaced by 1/2 in a two-dimensional case).
The velocity of an isolated bubble in a gas-fluidized bed thus compares well to the

velocity of the Davies–Taylor (see Davies & Taylor 1950) spherical-cap bubble of the
same radius rb:

ub = 2
3
[grb(1− ρi/ρo)]1/2, (4.2)

where ρi denotes the density of the material within the bubble and ρo the density of
the material outside (the prefactor 2/3 is again replaced by 1/2 in a two-dimensional
case). In the gas-fluidized bed case, ρi = ρf � ρo ∼ ρs.

In order to measure the rise velocity of a bubble in our liquid-fluidized bed, we
evaluate the bubble displacement between two video pictures of the bed, separated
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Figure 15. Rise velocity of bubbles as a function of the bubble radius rb: (a) results for isolated
bubbles: q = 4.0 cm s−1 (×), q = 4.8 cm s−1 (©), q = 5.7 cm s−1 (�), the curve corresponds to
equation (4.3); (b) results for bubbles in ‘trains’: q = 4.8 cm s−1 (©), q = 5.7 cm s−1 (�).

by a known time interval. This time interval is short (typically 0.5 s) so that the size
of the bubble, characterized by its radius rb, can be considered as constant. We make
a distinction between isolated bubbles and bubbles in a ‘train’. These measurements
were made for q = 4.8 cm s−1 and q = 5.7 cm s−1, in the bubbly regime, and at
q = 4 cm s−1. In this last case, bubbles were ‘injected’ in the bed with the forcing
device described in § 2.1, by imposing a strong voidage perturbation at the bottom of
the bed. The large-amplitude perturbation rapidly breaks up which results in a pair of
bubbles. The advantage of this technique is that it simplifies greatly the observation
of isolated bubbles. Indeed, for a flow rate q slightly larger than the critical flow rate
qc, the fluidized suspension displays a slow growth of one-dimensional voidage waves.
The bubbles injected at the bottom of the bed are therefore more likely to cover
long distances without interacting with pronounced voidage perturbations or other
bubbles, resulting from one-dimensional wave destabilization. This type of technique
is similar to that used in gas-fluidized beds, when some gas is injected through the
bed support to give birth to isolated bubbles.

Figure 15(a) presents the experimental results on the velocity of isolated bubbles.
The solid curve corresponds to the following equation:

ub = 0.5[grb(1− ρi/ρo)]1/2, (4.3)

where ρi = ρf and ρo = (1 − φ0)ρf + φ0ρs with φ0 = 0.55. It shows that a straight-
forward use of a ‘Davies–Taylor like’ formula provides a good estimate for the rising
velocity of an isolated bubble in the liquid fluidized bed case also. For a given bubble
radius, the velocity increases noticeably with the flow rate q. It has been argued by
Davidson (see for instance Davidson 1995) that the actual bubble rise velocity Ub is
equal to q − qmf + ub, where ub is the velocity of an isolated bubble. In the present
paper, ub is much larger than q−qmf . However, the difference seen in the rise velocities
at different q seems comparable to q − qmf .

Figure 15(b) shows experimental results concerning the rising velocity of bubbles
within a ‘train’. This velocity is approximately 1.3–1.5 times the velocity of an isolated
bubble of the same size.

5. Destabilization of a high-amplitude one-dimensional perturbation
As already mentioned in § 2.1 the support of the fluidized suspension can be moved.

A rapid up-and-down motion of this piston creates a local deficit of particles at the
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Figure 16. Injected bubbles with beads A, resulting from the destabilization of a high-amplitude
perturbation, imposed at the bottom of the bed.

bottom of the bed, which is then convected by the flow. The displacement of the
support (of typical amplitude 5ds) thus results in an imposed high-amplitude voidage
perturbation, much larger than the critical one-dimensional wave amplitude a1D . We
studied the response of the bed to this single forced perturbation. The main results
are summarized in this short section.

For high-density beads, at q > qc, the break-up of this perturbation produces
bubbles which behave like those growing from natural voidage disturbances (as
mentioned in § 4.2.3). We note here that for q < qc, the voidage perturbation break-up
still gives birth to bubbles but these bubbles are dampened: the bubble size slowly
decreases and finally the bubble disappears.

For moderate-density beads of set A, the break-up of the voidage perturbation
produces the bubble-like structures seen in figure 16. Such structures are similar to
the bubbles observed with high-density beads. We emphasize that such structures
are never observed naturally: they are much more dilute than the buoyant blobs
observed after the transverse destabilization of the one-dimensional voidage wave.
For q < qc, these two-dimensional structures are dampened but the poor quality of
the bed pictures and interactions between these injected bubbles do not allow us to
detect a specific mechanism leading to their disappearance. For q > qc, contrary to
what happens with high-density beads, such injected bubbles never propagate along
the bed and are again dampened until their amplitude reaches the typical voidage
wave amplitude. The resulting voidage perturbation then continues to propagate as
a usual voidage wave. Again, the damping mechanism of these bubbles is not clear
from our experiments.

Nonetheless, our experiments show that for beads A, injected bubbles do not
propagate indefinitely in a bed where they do not grow ‘naturally’ from voidage
perturbations. They also show the existence of a mechanism of destruction of the
bubbles, the understanding of which could help clarify the physical mechanisms
at work during the first stages of the ‘natural’ two-dimensional destabilization and
responsible for the disappearance or the growth of the buoyant blob (depending on
the bead density).

6. Comparison with previous numerical and theoretical predictions
First, we can try to compare the results concerning the destabilization of the one-

dimensional wave with the prediction of the linear theory of Batchelor & Nitsche.
Batchelor & Nitsche studied the stability of a fluid with density modulated sinusoidally
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Beads a1D ρs (g cm−3) ∆ρeq (g cm−3)

A 0.023± 0.006 4.08 0.071± 0.016
B 0.032± 0.006 2.48 0.047± 0.010
D 0.009± 0.003 2.55 0.014± 0.004

Table 6. Critical wave amplitude and equivalent density stratification.

in the vertical direction: ρ = ρ0 + ∆ρ sin(κz). For a two-dimensional unbounded
stratified fluid, the stratification is always unstable (Batchelor & Nitsche 1991) but
in the presence of lateral walls, there is a critical stratification (Batchelor & Nitsche
1993). The analogy with a fluidized bed is that the fluid equivalent to the fluidized
suspension presents a vertical density variation resulting from the variations in particle
concentration due to the one-dimensional voidage wave instability. This analogy
would be applicable a liquid-fluidized bed with solid particles of density comparable
with that of the liquid and/or of small size, i.e. with a small particle Reynolds number
based on the relative velocity of the two phases, so that the relative dynamics of the
solid dispersed phase and of the fluid phase may be neglected. This is the case
neither in our experiments nor in Anderson et al.’s (1995) simulations; moreover such
fluidized beds may proved to be stable (see Ham et al. 1990 and Duru et al. 2002).
However, Anderson et al. (1995) found that the Batchelor–Nitsche stability analysis
provides an easy way to estimate the time scale of the secondary instability of a
fluidized bed, when a fully developed one-dimensional wave is destabilized laterally.
Following the same idea, one can examine whether the Batchelor–Nitsche mechanism
could provide a way to estimate the critical amplitude of the one-dimensional wave
when the two-dimensional destabilization occurs. If this is the case, a first consequence
would be that the critical stratification ∆ρeq = a1D(ρs − ρf) should be independent of
the sets of beads. We see in table 6 that this is not the case so that further calculations
are useless.

Göz & Sundaresan (1998) studied the stability of one-dimensional waves to small,
transverse two-dimensional disturbances. They calculated the critical amplitude εc,
when the one-dimensional wave becomes unstable to transverse perturbations. Their
results suggest that εc is very small, ∼O(10−3–10−6), which is much smaller than
the measured a1D . Such a discrepancy could be explained by the fact that their
weakly nonlinear calculations depend on the assumption that the one-dimensional
wave is of small amplitude. In the experiment, the critical wave amplitude a1D is
large (although smaller than the one-dimensional saturated value), which could mean
that nonlinear effects are important when the two-dimensional destabilization occurs,
which is beyond the scope of Göz & Sundaresan’s paper.

We now compare our experimental results concerning the two-dimensional in-
stability of the one-dimensional voidage wavetrain to numerical results obtained by
Anderson et al. (1995) and Glasser et al. (1997). These authors performed fully
nonlinear numerical simulations of the two-phase model which should be able to
reproduce the experimental observations. As already mentioned, they investigated two
different cases. On one hand, they have simulated the growth of a two-dimensional
perturbation from the uniform unstable bed. On another hand, they studied the
transverse destabilization of a large-amplitude, saturated one-dimensional wave. In
§ 3.2, we have seen that the experimental situation is somewhere in between the two
cases studied in these numerical simulations. A purely one-dimensional growth is
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Set A Set B ASJ (1995) GSK (1997)

ds (mm) 1.2 1.2 1 1
ρs (g cm−3) 4.08 2.48 2.2 2.2
c1D (cm s−1) 5.5± 0.3 4± 0.2 3.1 2.86
c2D (cm s−1) 9–12 6–9 8.5 3.75
∆T (s) 0.8–1.2 1–1.4 2.5 2
a1D 0.023± 0.006 0.032± 0.006 0.3 0.22
φmin 0.4± 0.05 0.4± 0.05 0.15 0.2
φ0 0.53–0.57 0.52–0.555 0.57 0.57
Size (cm× cm) 1.5× 1.5 1.5× 1.5 3× 2 1.2× 1.2

Table 7. Comparison between experiments and numerical simulations. Data on the simulations
were extracted from the work of Anderson et al. (1995) (figure 17 in their paper) and Glasser et al.
(1997) (figure 19 in their paper).

visible in the experiments but the two-dimensional destabilization occurs ‘early’ in
the one-dimensional wave development, before it has reached its saturated amplitude.
The existence of this stage of purely one-dimensional growth preceding the two-
dimensional destabilization is also backed up by previous experiments (El-Kaissy
& Homsy 1976) and by the theoretical work of Göz & Sundaresan (1998). In the
following therefore, we have decided to limit to the comparison to the numerical
results obtained when a one-dimensional saturated wave is destabilized transversally,
keeping in mind that the wave amplitude in the simulations is then much larger than
in the experiment.

We first focus on the case of non-bubbly beds, namely results obtained with beads
of sets A and B, and compare them to what is found in numerical simulations when
a one-dimensional saturated voidage wave is allowed to destabilize transversally. The
typical destabilization event depicted in figure 4 is very similar to what is found
in the numerical simulations. The most satisfying point of comparison concerns the
general succession of the destabilization event. The two-dimensional destabilization
of the one-dimensional plane wave computed by Anderson et al. (1995) or Glasser
et al. (1997) follows the same stages as those observed in the experiment: buckling,
acceleration and finally homogenization of the particle concentration, see figure 17
of Anderson et al. (1995) and figure 19 of Glasser et al. (1997). Moreover, in a frame
moving with the buoyant blob, Anderson et al. (1995) found no upward motion of
solid particles at any moment during the course of the event, which seems to be
confirmed by our results, compare figure 5(a) and figure 19 of Anderson et al. (1995).
They concluded that the blob was filling up from above, as observed in the present
experiment.

In table 7, we give the values of some experimental quantities measured in the
experiment and compare them to the corresponding quantities found in the simula-
tions of Anderson et al. (1995) and Glasser et al. (1997). The aim of this table is to
go further than the qualitative similarities stressed above. The velocities c1D and c2D

are respectively the one-dimensional voidage wave speed and the rise velocity of the
two-dimensional buoyant blob. Both were measured by constructing spatio-temporal
diagrams with images of the fluidized bed. The one-dimensional voidage wave is not
saturated in amplitude but it has been shown (Duru et al. 2002) that its velocity does
not change much while growing and so we believe that it is relevant to compare it to
the saturated wave speed obtained in the simulations. As the lifetime of the buoyant
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blob was very short, its speed is difficult to evaluate with accuracy on a spatio-
temporal diagram. Thus, we only give a rough estimate for c2D . The time ∆T gives an
estimate of the duration of the whole destabilization event, from the initial buckling
of the wave to the final homogenization. Corresponding values from simulations are
taken from captions of figure 17 of Anderson et al. (1995) and 19 of Glasser et al.
(1997). The amplitude a1D is the already mentioned estimate of the critical value of the
one-dimensional wave amplitude just before the two-dimensional destabilization and
is compared to the saturated value of the one-dimensional wave amplitude used in the
numerical simulations. The concentration φmin is the minimum particle concentration
reached during the break-up. It is obtained when the voidage pocket starts to accel-
erate and it was evaluated using our particle concentration ‘maps’. The experimental
figures do not depend on the mean particle concentration φ0. The range in φ0 for
which these quantities were measured is also given in the table. The numerical results
were obtained at a given value of φ0, shown in the table. Finally, we compare the
size of the two-dimensional structures obtained in the experiments to those obtained
in the simulations.

The time scale ∆T and the velocities c1D and c2D are in good agreement, although the
values for c2D are much smaller in the simulations of Glasser et al. (1997). Of course,
a noteworthy difference between experiments and simulations is the value of a1D , as
already explained. This may explain why the minimum particle concentration obtained
during the simulated destabilization event is much smaller than the experimental
value, since, when the simulated destabilization occurs, the difference in particle
concentration between dense and dilute regions is already very large. It also could
explain why the whole event, from buckling to homogenization, lasts a little longer
in the numerical simulations, as it takes more time to fill the deeper concentration
hole. The sizes of the transient dilute structures found in the simulations depend on
the numerical scheme but give in both cases a good estimate of the real experimental
size.

We now focus on the case of bubbling liquid-fluidized beds. The experimental
results obtained with stainless steel beads of set C can be compared to what is
obtained in the case of lead shot beads fluidized by water, studied by Glasser et al.
(1997) (ds = 1 mm, ρs = 11.8 g cm−3). The main point is that the two-dimensional
destabilization of the plane wave now results into the formation of real bubbles.
We again note the similarity between the general succession of events leading to
the bubble formation in the simulation (see figure 17 of the paper by Glasser et al.
1997) and in the experiment (see figure 10). The whole destabilization event, from
the initial buckling of the plane wave to the formation of the bubble is very short
in the experiment: it lasts less than one second. This contrasts with the simulation
where the bubble is obtained in 9 s. However, this comparison of the time scale
has to be made with care. In the simulation, the system reaches a two-dimensional
stationary state (the bubble) whereas in the experiments, the bubbles are not stationary
structures. Their size grows more rapidly when the flow rate q is large, as mentioned
in § 4.2, until they split into two parts.

7. Conclusion
In this paper, we have presented experimental results concerning the secondary in-

stability of the voidage wavetrain resulting from the primary instability of a uniform
liquid-fluidized bed. In all cases studied, the voidage wavetrain is unstable. The most
revealing results are obtained with bead sets A, B and C which have approximately
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the same diameters but different densities. Whereas the two-dimensional destabi-
lization of the voidage wave results into the formation of short-lived buoyant blob
for the moderate-density beads of sets A and B, it leads to real bubble forma-
tion for high-density beads of set C, see §§ 3 and 4. In this last case, it is, as
far as we know, the first time that the complete succession of instabilities lead-
ing to bubble formation has been observed experimentally. The difference between
moderate- and high-density beads arises during the evolution of the dilute blob that
appeared as a result of the two-dimensional destabilization. Whereas it rapidly fills
in from above with moderate-density beads, its size rapidly increases with high-
density beads, which leads to the obtaining of a real bubble. This nonlinear stage
of the secondary instability seems to be well-captured by nonlinear simulations of
the two-phase model, especially for moderate-density beads. However, a clear phys-
ical understanding of this difference is still lacking. Our experiments reveal that the
difference between bubbling and non-bubbling systems is not absolute as previously
indicated by Anderson et al. (1995). But numerical simulations with intermediate
ratio ρs/ρf , for instance ranging from 4 to 10, could clarify this point by focusing
on the relative motion of particles and fluid at the very beginning of the dilute blob
formation.

We should mention that in the present experiment, the destabilization of the one-
dimensional wave is permitted only in the wider transverse x-direction because of the
small depth of the bed. In a fully three-dimensional bed, we may anticipate that the
destabilization will happen in both horizontal directions.

The estimate of the one-dimensional wave critical amplitude is also an important
result, see § 3.3. The prediction of this secondary instability threshold is a challenging
problem for theory. A ‘simple’ argument, involving a critical density stratification
of the fluid equivalent to the suspension, inspired by the work of Batchelor and
Nitsche, fails. It also seems unlikely that a weakly nonlinear theory may be used.
Indeed, in our relatively narrow bed, the estimated critical wave amplitude is large.
In a wider bed, transverse destabilization may occur earlier in the one-dimensional
wave development, as the apparatus can then contain longer transverse unstable
modes (see Göz & Sundaresan 1998). It then may be possible to compare the critical
wave amplitude to theory. This could also be studied in two-dimensional simulations
where the limited lateral extent of the system is taken into account. More generally,
future numerical simulations should study the influence of the one-dimensional wave
amplitude on the two-dimensional destabilization process. For instance, the study
of the destabilization of high-amplitude voidage perturbation could make clear the
physical mechanisms at work, as suggested by the results obtained when a large
perturbation is applied, see § 5.

Finally, the observation of a bubbly regime in the case of high-density beads, for
ρs/ρf ≈ 8, is a new feature of liquid–solid fluidization, see § 4.2. It should motivate new
theoretical and numerical studies based on the two-phase equation of motion in which
terms involving ρf are no longer neglected, which could help the understanding of
some striking features of bubbles such as the particle flow pattern, ‘trains’ of bubbles,
and bubble splitting.
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